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1. Introduction

The covariate shift problem is common in many prac-

tical computer vision applications, where the training and

test data are drawn from different distribution, e.g., the sea-

sonal distribution of natural species may change in a camera

trap dataset. Many domain adaptation (DA) methods have

been proposed to address this issue [3, 10, 19, 17, 11, 5, 18]

by matching the marginal distributions of source and target

domain. While domain adaptation provides a good starting

point, the performance of unsupervised DA methods often

fall far behind their supervised counterparts [16, 1]. In such

cases, some labeled data from the target domain can bring in

performance benefits. However, obtaining ground-truth an-

notations can be laborious and naı̈vely collecting annotated

data could be inefficient. In this work, we aim to answer the

following questions: 1) how to select data to label from the

target domain effectively, and 2) how to perform adaptation

given these labeled data from the target domain.

To this end, we propose an Active Adversarial Domain

Adaptation (AADA) that exploits the relation between do-

main adaptation and active learning to answer those ques-

tions. Our approach explores a duality between two related

problems: adversarial domain alignment and importance

sampling for adapting models across domains. The former

uses a domain discriminative model to align domains, while

the latter utilizes it to weigh samples to account for distri-

bution shifts. Specifically, our importance weight promotes

samples with large uncertainty in classification and diver-

sity from labeled examples, thus serves as a sample selec-

tion scheme for active learning. We show that these two

views can be unified in one framework for domain adapta-

tion and transfer learning when the source domain has many

labeled examples while the target domain does not. AADA

provides significant improvements over fine-tuning based

approaches and other sampling methods when the two do-

mains are closely related. The overall framework of our

AADA is illustrated in Figure 1. We perform experiments

on different domain adaptation tasks, including classifica-

tion and object detection, and demonstrate that the advan-

tage over baseline approaches is retained even after hun-

dreds of examples being actively annotated.

2. Proposed Algorithm

Domain Adaptation. We adopt the domain adver-

sarial neural network (DANN) [5], which is composed

of three components: feature extractor Gf for the in-

put x, class predictor Gy that predicts the class label

Gy(Gf (x))→{1, ..., L}, and discriminator Gd that classi-

fies the domain label Gd(Gf (x))→{0, 1}. We use 1 for the

source domain and 0 for the target domain. The objective

function of the discriminator Gd is defined as:

Ld = Ex∼pS(x)

[

logGd(Gf (x))
]

+ Ex∼pT (x)

[

log(1−Gd(Gf (x)))
]

,
(1)

where Gf , Gy, Gd are parameterized by θf , θy, θd, respec-

tively. To perform domain alignment, features generated

from Gf should be able to fool the discriminator Gd, and

hence we adopt an adversarial loss to form a min-max game:

min
θf ,θy

max
θd
Lc(Gy(Gf (x)), y) + λLd, (2)

where Lc is the cross-entropy loss for classification, y is the

class label, and λ is the weight between two losses.

Sample Selection. Given an unsupervised domain adapta-

tion setting where labeled data is only available from the

source domain, the goal of our sample selection is to find

the most informative data from unlabeled target domain.

We motivate the sample selection criteria from the idea

of importance weighted empirical risk minimization (IW-

ERM) [14], whose learning objective is defined as follows:

min
θf ,θy

E(x,y)∼pS(x,y)

[ pT (x)

pS(x)
Lc

(

Gy(Gf (x)), y
)

]

, (3)

where w(x)= pT (x)
pS(x) is an importance of each labeled data

in the source domain. The formulation indicates which data

is more important during optimization: 1) the data with

higher empirical risk Lc

(

Gy(Gf (x)), y
)

, and 2) the one

with higher importance, i.e., larger density in the target dis-

tribution pT (x) but lower in the source pS(x).
Unfortunately, applying this intuition to come up with a

sample selection strategy is non-trivial. This is because the
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Figure 1: We start from unsupervised domain adaptation setting with labeled source Ls and unlabeled target Ut data and

train the model with domain adversarial loss. In each following round, we first select samples using importance weight from

unlabeled target domain to obtain annotations. We then re-train the model with labeled data Ls ∪ Lt and unlabeled data Ut.

Algorithm 1 AADA

Input: labeled source Ls; unlabeled target Ut;

labeled target Lt = ∅; budget per round b
Model:M={Gf , Gy , Gd}; feature extractor Gf ;

class predictor Gy; discriminator Gd

TrainM with (Ls, Ut)
for round← 1 to MaxRound do

Compute s(x) ∀x ∈ Ut via (5)

Select a set of b images z from Ut according to s(z)
Get labels yz from oracle

Lt ← Lt ∪ (z, yz)
Ut ← Ut \ (z, yz)
TrainM with (Ls ∪ Lt, Ut)

target data is mostly unlabeled and the empirical risk can-

not be computed before annotation. Another problem is that

the importance estimation of high-dimensional data is dif-

ficult [15]. We take advantage of domain discriminator to

resolve the second issue. Note that, with adversarial train-

ing, the optimal discriminator [7] is obtained at:

G∗
d(x̂)=

pS(x)

pS(x)+ pT (x)
⇒ w(x)=

1−G∗
d(x̂)

G∗
d(x̂)

, (4)

where x̂=Gf (x). Next, assuming cross-entropy as an em-

pirical risk, we resolve the first issue by measuring the en-

tropy of unlabeled data, which is a lower bound of the cross-

entropy. Finally, our sample selection criterion s(x) for un-

labeled target data is written as follows:

s(x) =
1−G∗

d(Gf (x))

G∗
d(Gf (x))

H(Gy(Gf (x))). (5)

Two components in the measure are interpreted as follows:

1) diversity cue (1−G∗
d(Gf (x)))/G

∗
d(Gf (x)), and 2) un-

certainty cue H(Gy(Gf (x))). The diversity cue allows us

to select unlabeled target data which is less similar to the la-

beled ones in the source domain, while the uncertainty cue

suggests data which the model cannot predict confidently.

The overall algorithm is shown in Algorithm 1.

3. Experiments on Digit Classification

Our proposed method aims to address two questions: 1)

how to select images to label from Ut to yield the most

performance gain? and 2) how to train a classifier given

{Ls, Lt, Ut}? We perform experiments comparing these

two components in a mix-and-match way, on digit classi-

fication task from SVHN [12] to MNIST [9]. We explore

the following training schemes: 1) Adversarial Training:

we train the classifier via (2) using (Ls ∪ Lt, Ut); 2) Joint

Training: we train the classifier in a supervised way using

Ls ∪ Lt; 3) Fine-tuning: we train a classifier using Ls and

then fine-tune it on Lt, both in a supervised way.

The sampling strategies we explored are: 1) Importance

Weight: we select samples based on the proposed impor-

tance weight s(x) in (5); 2) K-means Clustering: we per-

form k-means clustering on image features Gf (x), ∀x ∈
Ut, where the number of clusters is set to b in each round.

The sample which is the closest to its center is selected in

each cluster; 3) K-center (Core-set) [13]: we use greedy

k-center clustering to select b images z from Ut such that

the largest distance between unlabeled data Ut \ z and la-

beled data Lt ∪ z is minimized; 4) Diversity [4]: for each

unlabeled sample in Ut, we compute its distance to all sam-

ples in Lt and obtain the average distance. Then we rank

unlabeled samples w.r.t. its average distance in descending

order and select the top b samples. L2 distance is applied on

features Gf (x); 5) Best-versus-Second Best (BvSB) [8]:

we use the difference between the highest and the second

highest class prediction as the uncertainty measure., i.e.,

maxi Gyi
(x̂)−Gyj

(x̂), where class j has the second high-

est prediction; 6) Random Selection: we select samples

uniformly at random from all the unlabeled target data Ut.

Our AADA uses importance weight for sample selection,

and adversarial training as the training scheme. Note that,

different sampling methods do not compete with AADA as

it can be combined with our method. For example, BvSB

can be used as an alternative uncertainty measurement as

opposed to entropy in (5).
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3.1. Comparison of Sampling Methods

As shown in Figure 2a, our importance weight performs

favorably against other active sampling methods and can

achieve 95% accuracy with 160 samples after 16 rounds,

while the random selection baseline requires two times

more annotations to achieve similar performance. More-

over, our proposed method consistently improves the per-

formance when more samples are selected and annotated,

whereas other baselines generate unstable performances.

3.2. Comparison of Training Schemes

We compare different training schemes and show the ef-

fectiveness of combining adversarial training with impor-

tance weight. As shown in Figure 2b, our AADA method

demonstrates its effectiveness, especially when very few la-

beled targets Lt are available; on the other hand, when more

and more labeled targets are available, fine-tuning becomes

a competitive option as the benefit of leveraging informa-

tion from source domain has decreased.
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(a) Different sampling strategies with adversarial training.
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(b) Different training schemes with importance weight.

Figure 2: Digit classification results (SVHN → MNIST).

10 images are selected to label in each round.

4. Experiments on Object Detection

Now we focus on object detection task adapting from

KITTI [6] to Cityscapes [2]. We use the same setting

as [1], which only considers the car object. We select

{10, 10, 10, 20, 50, 100} images in each round and assume

that the cost of labelling one image is the same. We report

our quantitative results in Table 1. Our baselines contain ad-

versarial training with other sampling methods and different

training schemes with random sampling. Note that BvSB

is not included here since in the single object category de-

tection scenario, it provides the same measurement as en-

tropy. Overall, using adversarial training and importance

weight (AADA) yields the best performance. Specifically,

60.4% accuracy can be achieved with 100 labeled target se-

lected by AADA, while other baselines require about twice

as much annotations to achieve similar performance. We

further illustrate images selected with AADA within two

rounds in Figure 3. Images selected in the third round have

more cars and the semantic layouts are different w.r.t. that of

the fourth round, showing that our method is able to select

diverse samples.

Training Sampling
Number of Labeled Target

10 20 30 50 100 200

Adversarial Imp. weight 49.4 53.3 54.6 57.4 60.4 62.3

Adversarial K-means 49.1 51.7 53.8 56.8 59.2 60.9

Adversarial Entropy 48.9 50.9 52.3 54.3 58.1 61.0

Adversarial Random 47.4 49.8 51.6 55.2 58.6 61.7

Joint Imp. weight 48.5 52.1 53.5 56.2 58.6 60.5

Joint Random 45.5 48.8 51.8 54.9 59.0 61.6

Fine-tuning Random 41.0 46.0 48.7 51.4 56.0 59.8

Table 1: Object detection results (KITTI → Cityscapes).

Our AADA method (first row) performs the best.

Figure 3: Top 10 images selected in the third and the fourth

rounds from the target domain (Cityscapes) using AADA.

5. Conclusion

We propose AADA, a unified framework for domain

adaptation and active learning via adversarial training.

When few labeled target are available, the domain adver-

sarial model helps improve the classification; meanwhile,

the discriminator can be utilized to obtain the importance

weight for active sample selection in the target domain.
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